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The layout positioning problem of facilities on a straight line is known as Single Row Facility Layout Prob-
lem (SRFLP). The objective of SRFLP, categorized as NP Complete problem, is to arrange the layout so that
the sum of distances between all facilities’ pairs can be minimized.

Estimation of Distribution Algorithm (EDA) efficiently improves the solution quality in first few runs,
but the diversity loss grows rapidly as more iterations are run. To maintain the diversity, hybridization
with metaheuristic algorithms is needed. This research proposes Hybrid Estimation of Distribution Algo-
rithm (EDAhybrid), an algorithm which consists of hybridization of EDA, Particle Swarm Optimization
(PSO), and Tabu Search. Another hybridization algorithm, extended Artificial Chromosomes Genetic Algo-
rithm (eACGA), is also built as benchmark. EDAhybrid’s performance is tested in 15 benchmark problems
of SRFLP and it successfully achieves optimum solution. Moreover, the mean error rates of EDAhybrid
always get the lowest value compared to other algorithms.

SRFLP can be enhanced by considering more constraints, so it becomes enhanced SRFLP. Computational
results show that EDAhybrid can also solve Enhanced SRFLP effectively. Therefore, we can conclude that
EDAhybrid is a promising metaheuristic algorithm which can be used to solve the basic and enhanced SRFLP.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction optimization problems (Zhang & Muhlenbein, 2004). Moreover,
The Single Row Facility Layout Problem (SRFLP) is taken into
account when multiple products with different production vol-
umes and different process routings need to be manufactured.
The objective of SRFLP is to set up the facilities so that sum of
the distances between all facility pairs can be minimized (Amaral,
2006). Because SRFLP is proven to be a Nondeterministic Polyno-
mial-time (NP) Complete problem, the exact methods applied to
large instances of the problem are time consuming. Hence, heuris-
tic methods are built to acquire a near optimal solution to the
problem (Samarghandi & Eshghi, 2010).

Existing researches which applied metaheuristics have contrib-
uted to solve the SRFLP. Despite its contribution, each study, in fact,
has particular benefits and limitations. By solving SRFLP effectively,
it is hoped that an algorithm can also succeed in solving the differ-
ent cases of Facility Layout Problem.

Estimation of Distribution Algorithms (EDAs) are stochastic
optimization techniques that explore the space of potential
solutions by exploiting the inter variable dependency and sam-
pling probabilistic models of promising candidate solutions (Haus-
child & Pelikan, 2011). Therefore, they could efficiently solve hard
EDAs are predicted to potentially effective to solve SRFLP. EDAs
may cause overfitting in the search space and cannot provide the
general information (Santana, Larrañaga, & Lozano, 2008). EDAs
efficiently improve the solution quality in the first few runs, but
the diversity loss grows rapidly as more iteration is run. To main-
tain the diversity, hybridization with metaheuristic algorithm is
needed. EDAs are used to characterize the parental solutions and
to search around the current solution space. After that, metaheu-
ristics might introduce new solutions into the population to main-
tain diversity, which can avoid the spremature convergence of
EDAs (Chen, Chen, Chang, & Chen, 2012).

This study proposes Hybrid Estimation of Distribution Algo-
rithm (EDAhybrid), an algorithm which consists of hybridization
of Estimation of Distribution Algorithm (EDA), Particle Swarm
Optimization (PSO), and Tabu Search algorithm to surmount the
basic and enhanced SRFLP. PSO is utilized as metaheuristic algo-
rithm for maintaining the diversity of EDA. Tabu Search explores
the global best value achieved in every iteration. Other hybridiza-
tion algorithm is built as benchmark; that is extended Artificial
Chromosomes Genetic Algorithm (eACGA).

The objectives of this research are as follows:

a. To develop EDAhybrid, a new meta-heuristic algorithm which
is the hybridization of Estimation of Distribution Algorithm,
Particle Swarm Optimization, and Tabu Search Algorithm.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cie.2013.05.018&domain=pdf
http://dx.doi.org/10.1016/j.cie.2013.05.018
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b. To design an enhanced Single Row Facility Layout Problem
that considers more constraints which include not only flow,
length, and clearance space, but also the installation cost and
safety reason. The detail of this objective is explained in
Section 2.3.

c. To apply EDAhybrid algorithm to solve the basic and
enhanced Single Row Facility Layout Problems.

2. Literatures review

2.1. Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) are stochastic
optimization techniques that explore the space of potential solu-
tions by exploiting the inter variable dependency and sampling
probabilistic models of promising candidate solutions (Hauschild
& Pelikan, 2011). EDAs construct a probabilistic model to get the
parental distribution and sample new solutions (Pelikan, Goldberg,
& Lobo, 2002). EDAs make use of sampling from probabilistic mod-
els that avoid the disruption of partial dominant solutions (Santana
et al., 2008) and they makes differentiation from Genetic Algo-
rithms (GAs). EDAs might be a powerful method capable of captur-
ing and manipulating the building blocks of chromosomes.
Therefore, they could efficiently solve hard optimization problems
(Zhang & Muhlenbein, 2004). The complete reviews of EDAs are
presented by Lozano et al. (2006) and Hauschild and Pelikan (2011).

The Extended Artificial Chromosome Genetic Algorithm (eAC-
GA) is derived from Artificial Chromosome with Genetic algorithm
(ACGA), an algorithm that joins EDA and GA in effective manner
(Chen et al., 2012). ACGA is able to interpret parental distribution
by sampling new solutions from the univariate probabilistic mod-
els and also genetic operators. The main difference characteristic of
probabilistic models in ACGA compared to most EDAs is ACGA
samples new individuals periodically whereas EDAs generate
new solutions entirely (Chang, Hsieh, Chen, Lin, & Huang, 2009).
ACGA was used to chip resistor scheduling problem (Chang et al.,
2009) in order to accelerate the convergence rate in GA.

A research has proposed eACGA as a solution for scheduling
problems. In (Chen et al., 2012), ACGA is improved as eACGA and
employed to solve permutation flowshop scheduling problems.
eACGA collects not only the univariate probabilistic model, like
ACGA just discussed, but also the bivariate probabilistic model.
eACGA seems to be very powerful since it considers both univari-
ate and bivariate statistic information. The use of variable interac-
tion in bivariate probabilistic model can represent better
individual information for EDA part in eACGA (Chen et al., 2012).

2.2. Metaheuristic algorithms for solving Single Row Facility Layout
Problem

SRFLP is proven to be a NP Complete problem. Therefore, the ex-
act methods applied to large instances of the problem are time con-
suming; hence heuristic methods have been built to acquire a near
optimal solution of the problem (Samarghandi & Eshghi, 2010).

Recent papers have already tried to solve SRFLP with metaheu-
ristic approaches. A simulated annealing method to handle SRFLP
was developed by Heragu and Alfa (1992). Solimanpur, Vrat, and
Shankar (2005) improved mixed integer model and an ant algo-
rithm to overcome SRFLP. Samarghandi, Taabayan, and Jahantigh
(2010) used the new factoradic based Particle Swarm Optimization
for coding and encoding technique.

Samarghandi et al. presented and proved a theorem to find the
optimal solution of a special case of SRFLP. The results obtained by
the theorem is proven to be very useful in reducing the computa-
tional efforts when a new algorithm based on Tabu Search for the
SRFLP (Samarghandi & Eshghi, 2010) is performed. Datta, Amaral,
and Figueira (2011) offer permutation based genetic algorithm
with specially designed crossover and mutation operators for get-
ting optimal solution of SRFLP.

2.3. Enhanced Single Row Facility Layout Problem

Minimizing material-handling costs and providing a safe work-
place for employees are the main considerations in the design of
manufacturing layouts (Heragu, 2008). In each case, a number of
suitable locations might be available; however, the cost of assigning
a machine might differ in each location. It could depend on such fac-
tors as the existing condition of the site and/or the modification
needed to the foundation likewise as the environs (Sule, 2009).

According to Drira, Pierreval, and Hajri-Gabouj (2007), the objec-
tives of research in facility layout problem at manufacturing indus-
try are minimizing space cost (for unequal size facility), handling
cost, rearrangement cost (for dynamic layout), backtracking and
bypassing, traffic congestion (for cellular layout), and shape irregu-
larities (for unequal size facility). In SRFLP, the objectives of related
researches (Amaral, 2009; Samarghandi et al., 2010; Solimanpur
et al., 2005) usually focus on minimizing the weighted sum of dis-
tances by considering length of facilities and total materials flowing
between facilities so that material handling cost can be minimized.

Heragu (2008) presents case study about real world problem in
manufacturing company that consider technological constraint in a
layout positioning. The technological constraint here means two
facilities cannot be adjacent by each other. This kind of constraint,
which cannot put the specified two facilities by each other, in con-
struction site layout problem is called safety constraint (Mawdesley
& Al-Jibouri, 2003). In another book, Sule (2009) presents a fixed
cost concept that already described earlier about the cost for install-
ing a facility that might differ in each location.

Combining these two ideas, we can enhance the SRFLP objective
function to be more comprehensive and more applicable in real
case by considering fixed cost and safety constraints. This problem
is labeled as Enhanced SRFLP.

3. Problem statement

3.1. Single Row Facility Layout Problem

This research considers Single Row Facility Layout Problem
(SRFLP) with different sizes of facilities. The objective is to mini-
mize Z which stands for sum of the distances between all facility
pairs. The length li of each facility i and a nxn matrix T = [Tij] are
given; Tij refers to the traffic loads between facilities i and j. The
distance between two facilities is supposed to be taken between
their mid points. ABSMODEL, proposed by Heragu and Kusiak
(1991), is a well known model for solving SRFLP. ABSMODEL is
illustrated in Eq. (1). Heragu and Kusiak (1991) defined dij as Eq.
(2). Note that Dij is not necessarily equal to sij. If facility k is placed
between facilities i and j with sij = 0 then Dij = lk.

min z ¼
Xn�1

i¼1

Xn

j¼iþ1

Tijdij

s:t: : dij P
1
2
ðli þ ljÞ þ sij

dij 6 0; i ¼ 1;2; . . . ;n� 1; j ¼ iþ 1; . . . ;n

ð1Þ

Tij is the traffic loads between facilities i and j, dij the distance be-
tween the centers of the facilities i and j, sij the necessary clearance
or gap between the two facilities, li is the length of facility i.

dij ¼
1
2
ðli þ ljÞ þ Dij ð2Þ

Dij is the space between facilities i and j.



Table 1
Chromosome illustration.

i 1 2 3 4 5

X[i] 5 3 2 1 4
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3.2. Enhanced Single Row Facility Layout Problem

Combining the safety constraint presented by Heragu (2008)
and the fixed cost concept mentioned by Sule (2009), we could en-
hance the SRFLP objective function to be more extensive and more
applicable in real case by considering the safety constraint and the
installation cost. The problem is labeled as Enhanced SRFLP.

The Enhanced Single Row Facility Layout Problem (enhanced
SRFLP) is an enhanced model of single row facility layout which
considers length of facilities, traffic loads between facilities, instal-
lation cost of each facility and also safety constraint. Similar to
SRFLP, the objective of enhanced SRFLP is to minimize Z which
stands for sum of the distances between all facility pairs.

The objective function of Enhanced SRFLP is shown in the fol-
lowing equation:
min z ¼
Xn�1

i¼1

Xn

j¼iþ1

TijdijBij þ
Xn

i¼1

Xn

x¼1

dixCix

s:t: : dij P
1
2
ðli þ ljÞ þ sij

dij 6 0; i ¼ 1;2; . . . ;n� 1; j ¼ iþ 1; . . . ;n

ð3Þ
Tij is the traffic loads between facilities i and j, dij the distance be-
tween the centers of the facilities i and j, sij the clearance space be-
tween the two facilities, dix the permutation matrix variable (equals
to 1 if facility i is assigned to location x, otherwise its equals to 0), Cix

the construction cost of assigning facility i to location x, and Bij is the
interactive cost of assigning facility i on the location neighboring
facility j.

To calculate Z, the penalty cost will be given to a solution violat-
ing the safety constraint. Bij is related to the safety constraint han-
dling. Bij equals to penalty cost if facility i cannot be adjacent to
facility j due to safety constraint, otherwise it equals to 1.
4. Methodology

Before developing an EDAhybrid algorithm, we firstly build a
modified eACGA to deal with SRFLP. The EDA and GA are also
developed to become benchmarks. EDA developed here is an ex-
tended version of the basic EDA. EDA used in this research consid-
ers two probabilistic models suggested by Chen et al. (2012).
eACGA can perform better than EDA and GA, but for large number
of facilities, its performance is decreased.

Since finding shows that eACGA could not find optimal solu-
tion, PSO is chosen to become alternative algorithm to be hybrid-
ized with EDA. PSO is chosen because its computational time is
faster than GA. This will be a big advantage in dealing with large
number of facilities. The hybridization of EDA and PSO is created
and gets running time faster than eACGA, but its performance
still cannot get optimal solution in problems with large number
of facilities. So, a local search based on Tabu Search is added
to increase its performance. The algorithm then is named
EDAhybrid.

In a problem containing n facilities labeled as F1, F2, . . ., Fn, a se-
quence X contains permutation numbers of all the labels. X can be
represented by assigning facility X[i] to location i, where i 2 [1,n].
Different sequences in X represent different layout solutions. The
representation of chromosome is shown in Table 1. The number
of chromosome’s location is adjusted with the number of facilities
in the benchmark problems. Table 1 shows the example of chromo-
some representation with 5 facilities. X[2] = 3 means assigning
facility 3 to location 2.
4.1. General procedure of eACGA

The eACGA framework taken from Chen et al. (2012) is modified
to be more suitable with our code to solve SRFLP. The eACGA pro-
cedure starts with initialization of all variables. A population con-
sisting of a number of chromosomes is also initialized randomly.
The main iteration starts with a decision for choosing between
EDA or GA procedure to be performed. If g, which represents the
current generation, can be divided by 2, then EDA procedure is exe-
cuted, otherwise GA procedure is performed.

EDA procedure starts with a selection process that attempts to
choose chromosomes with better fitness values. Chromosomes’
fitness values are sorted first and a group of chromosomes with
better fitness are selected. The probabilistic models form the ordi-
nal (univariate model) and dependency (bivariate model) matrices
from selected chromosomes. These probabilistic models will be ex-
plained in Section 4.2.1. After the two probabilistic models are
established, a group of chromosomes for the next generation are
generated with the sampling process.

On the other side, GA procedure consists of crossover and muta-
tion processes. The crossover rate and mutation rate decide
whether chromosomes mate and mutate, respectively. We use
0.7 for the crossover rate and 0.3 for the mutation rate. Roulette
wheel selection chooses the parental chromosomes. Two point
crossover operator mates two chromosomes with better fitness
values as the parents. The mutation then probably occurs and
chooses between three mutations operators that flip, swap, or
slide, and that is to be undertaken.

The replacement step replaces the parental chromosomes with
their offspring. This step is only done once in each generation. The
fitness value of every chromosome then is calculated. The elitism
strategy is also done in this step. The elitism rate is 10% of the
population size. A group of new generation chromosomes are sent
to be processed into the next iteration.
4.2. Procedure of EDAhybrid

The procedure of EDAhybrid is shown in Fig. 1, while the
pseudocode of EDAhybrid is provided in Fig. 2. The procedure
starts with initialization of all variables. A swarm consisting of a
number of particles is also initialized randomly. Initialization of
every particle uses random permutation from 1 until n facilities.
The main iteration is preceded with initialization and setting of
all parameters. Next, a decision to choose between EDA or PSO pro-
cedure is made. If g, which represents the current generation, can
be divided by 2, EDA procedure is executed, otherwise PSO proce-
dure is performed.

Population replacement replaces the parental chromosomes
with their offspring. Particles’ best fitness and theirs location are
expressed as pBest. Global best fitness among particles and its loca-
tion is called gBest. Fitness calculation followed by pBest and gBest
updating are then done after.

Local search based on Tabu Search is carried out with gBest as
the input. If Tabu Search can get better solution than gBest, then
gBest is replaced with solution from Tabu Search. Next, if the
EDA part is performed in the following generation, the elitism
strategy is undertaken. The elitism rate is 10% of the population
size. The new generation of particles is processed into next



Fig. 1. EDAhybrid framework.
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iteration. Detailed procedure of EDA, PSO, and Tabu Search will be
explained in next sections.
4.2.1. Estimation of Distribution Algorithm part
In every generation g, a group of C particles which have better

fitness are selected. The particles are labeled as X1, X2, . . ., and XC,
where C is half of population size (Hauschild & Pelikan, 2011).
The distribution of parental particles are interpreted by sampling
new solutions from the univariate and bivariate probabilistic mod-
el (Chen et al., 2012).

We develop our univariate probabilistic model, while the bivar-
iate probabilistic model is adopted from Chen et al. (2012). The
univariate or ordinal probabilistic model, /i½i� in Eq. (4) shows the
importance of facilities in the sequence. It represents how many
times facility i is placed at position [i] at current generation. Ak

i½i�
is set to 1 if facility i is placed at position [i], otherwise it is set
to 0.

/i½i� ¼
XC

k¼1

Ak
i½i� ð4Þ

where i = 1, . . ., n; k = 1, . . ., C.
The bivariate or dependency probabilistic model wij, in Eq. (5),

represents how many times facility j is placed immediately after
facility i. Bk

ij is set to 1 if facility j is placed next to facility i, other-
wise it is set to 0.

wij ¼
XC

k¼1

Bk
ij ð5Þ

where i, j = 1, . . ., n; k = 1, . . ., C.



Fig. 2. EDAhybrid pseudocode.
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Let Pi[i] be the probability value of assigning facility i at position
[i]. Selecting facility i has better probability value than other
facilities when both probabilistic models’ statistical information
is used, /i[i] is added by wij. They will summarize the probability
values of all unassigned facilities that could be set at position [i].

For every particles’ offspring O1, O2, . . ., and O2C, some methods
are used to assign facilities to a specified location. Selecting a
facility at the first location, our approach picks randomly the first
facility that appears in the group of selected C particles, that is
X[1]. We think that this approach is more promising than the one
proposed in Chen et al. (2012), which generates facility randomly.

For assigning the remaining facilities, we modify the formula
used in Chen et al. (2012) which multiplying /i[i] with wij. We
change the formula to become adding /i[i] with wij, that is Eq.
(6). The reason is because add operation, not multiplication one,
gives better result when tested in EDAhybrid.

Pi½i� ¼
/i½i� þ wijP

i2Xð/i½i� þ wijÞ
ð6Þ

where Pi[i]: the probability value of assigning facility i at position [i],
[i] = 2, 3, . . ., n; i,j = 1, 2, . . ., n, X = set of unassigned facilities.The
pseudocode shown in Fig. 3 demonstrates the assignment proce-
dure for placing facilities into location 2 until n. This pseudocode
is a modified version from the one presented in Chen et al. (2012).
4.2.2. Particle Swarm Optimization part
PSO procedure starts when current generation is odd and begins

with initialization of all related parameters. Next, the velocities
calculation of every particle is operated. If the velocity is larger,
the particle is more likely to change to a new permutation
sequence. The velocity update formula remains the same like pro-
vided in Haupt and Haupt (2004), while the particle update process
is changed. EDAhybrid uses permutation based particle updating
based on concept from Hu, Eberhart, and Shi (2003).

4.2.3. Tabu Search part
The best solution from individual generated by EDA or PSO part

in every generation is the input for Tabu Search. Fig. 4 provides the
pseudocode of Tabu Search in EDAhybrid. The Tabu Search proce-
dure is performed for n (equal to the number of facilities) genera-
tions. Swaplist is constructed in every tabu generation; this process
is shown in line 3 of Fig. 4. Swaplist consists of three columns, the
first and second columns are the specified facility that will be
swapped and the last column provides the cost of that move. When
calculating a move’s cost, the algorithm checks whether the move is
taboo or not by looking in tabulist. If the move is listed in tabulist
and the move’s cost is greater than tabuSolution, a penalty cost is
added; otherwise the move is accepted without a penalty cost.

The algorithm records the move with minimum cost in line 8.
Tabulist is updated in line 9. If the currentSolution is better than
tabuSolution, then tabuSolution is updated. The iterations continue
to run until n generations.

At the end of this local search, the algorithm checks whether
tabuSolution, as the output of Tabu Search, can find better solution
than the current best solution. This part is shown in line 14 until
16. If tabuSolution succeeds to get lower cost, then the current best
solution is replaced with tabuSolution.



Fig. 3. Assignment of facilities pseudocode.

Fig. 4. Tabu Search pseudocode.
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5. Result analysis

5.1. Parameters setting

There are some parameters used in EDAhybrid. General parame-
ters, which are population size and generation size, are based on the
size of the problem. The larger the number of facilities, the more
population and generation are needed to get an optimal solution.
The number of facilities is represented by n. The population size
and generation size, for example 4n, 10n, etc., are obtained by an
extensive experiment to EDAhybrid. For problem with 4 until 15
facilities, the population size needed is 4n. The generation needed
for 4 up to 15 facilities are 10n. For large number of facilities, the
population and generation needed are varied. Problem with 20 facil-
ities needs 5n populations and 350 generations, problem with 25
facilities requires 5n populations and 550 generations, while prob-
lem with 30 facilities needs 6n populations and 800 generations.
For EDA part parameters, the selection size also depends on
the number of population, which is a half of population size
(Ceberio, Irurozki, Mendiburu, & Lozano, 2012). The elitism rate
is assumed like the common setting (Chen et al., 2012) that is
10% of the generation. To determine the PSO part parameters,
this research uses Eq. (7) (Haupt & Haupt, 2004) to adjust inertia
weight.

w ¼ ðmaxgen� currentgenÞ=maxgen ð7Þ

Tabu Search here is used as the local search, so that the algo-
rithm is set to become faster with n generations, swaplist size
equal to 2(n � 1) and tabu tenure is dn/5e.

Many literatures use acceleration constants (c1 and c2) equal to
2.05. Based on Bratton and Kennedy (2007) and Navalertporn and
Afzulpurkar (2011), the standard of acceleration constants are also
2.05. So, this research uses acceleration constants equal to 2.05.



Table 2
Computational results of all algorithms.

Problem n OFV OFV (other papers) EDA GA PSO eACGA EDAhybrid

Samarghandi et al.
(2010)

Min Error
(%)

Min Error
(%)

Min Error
(%)

Min Error
(%)

Min Error
(%)

P4 4 638 (Amaral, 2006) 638.0 638 0.00 638 0.00 638 0.00 638 0.00 638 0.00
LW5 5 151 (Datta et al., 2011) 151.0 151 0.30 151 0.00 151 0.23 151 0.00 151 0.00
N6 6 1.99 (Solimanpur et al., 2005)

1.990
1.99 1.61 1.99 0.00 1.99 2.76 1.99 0.00 1.99 0.00

S8 8 801 (Amaral, 2006) 801.0 801 0.58 801 1.20 801 2.25 801 0.14 801 0.04
S8H 8 2324.5 (Datta et al., 2011) 2324.5 2324.5 0.13 2324.5 0.47 2324.5 0.74 2324.5 0.08 2324.5 0.07
S9 9 2469.5 (Amaral, 2006) 2469.5 2469.5 0.48 2469.5 2.46 2469.5 5.74 2469.5 0.33 2469.5 0.06
S9H 9 4695.5 (Amaral, 2006) 4695.5 4695.5 0.06 4695.5 0.34 4695.5 0.55 4695.5 0.06 4695.5 0.05
S10 10 2781.5 (Datta et al., 2011) 2781.5 2781.5 1.68 2781.5 4.72 2781.5 5.24 2781.5 1.61 2781.5 0.74
S11 11 6933.5 (Datta et al., 2011) 6933.5 6933.5 1.81 6953.5 4.82 6933.5 4.04 6933.5 2.54 6933.5 1.20
LW11 11 6933.5 (Datta et al., 2011) 6933.5 6943.5 2.08 6985.5 4.25 6973.5 3.91 6933.5 2.09 6933.5 0.96
N12 12 23.365 (Solimanpur et al., 2005)

23.365
23.645 2.53 23.655 5.17 23.575 7.50 23.58 4.38 23.365 1.11

P15 15 6305 (Amaral, 2006) 6305.0 6379 4.52 6610 9.71 6576 10.21 6432 5.99 6305 0.81
P20 20 15549 (Datta et al., 2011) 15549.0 16583 7.85 16,255 7.85 16,560 12.48 16,314 9.09 15,549 1.80
P25 25 4619 (Anjos et al., 2008) 4618.0 4837 9.93 4705 5.90 4899 11.47 4865 7.59 4618 2.04
P30 30 44,965 (Datta et al., 2011) 44965.0 49,237 12.73 46,319 4.92 48,643 11.90 46,369 6.69 44,965 2.13

Mean error 3.09 3.45 5.27 2.71 0.73

n: number of facilities.
OFV: Objective Function Value.
Min: minimum solution found in 20 runs.
Error (%): the mean value in 20 runs compared to the lowest Min found among all algorithms.

Table 3
Standard deviation comparison among all algorithms.

Problem EDA GA PSO eACGA EDAhybrid

P4 0 0 0 0 0
LW5 1.61 0 0 0 0
N6 0.08 0 0.11 0 0
S8 12.89 6.4 18.23 2.36 1.57
S8H 6.98 10.64 11.09 5.75 4.92
S9 27.88 36.35 137.67 14.12 6.48
S9H 5.23 13.3 20.97 5.41 4.42
S10 54.04 71.55 101.34 54.69 53.51
S11 120.28 153.3 132.22 133.56 113.06
LW11 137.13 127.31 157.09 115.08 82.06
N12 0.25 0.46 0.73 0.46 0.27
P15 193.87 255.31 227.45 140.35 115.71
P20 235.97 250.63 556.95 340.01 226.34
P25 87.14 85.96 124.57 83.23 79.59
P30 637.91 695.65 1217.5 1019.4 717.66

The bold values indicate the minimum values found among all algorithms.

Table 4
Mean running time (seconds) comparison among all algorithms.

Algorithm Mean runtime (s)

EDA 25.52
GA 12.594
PSO 2.598
eACGA 18.56
EDAhybrid 40.082

The bold values indicate the minimum values found among all algorithms.
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5.2. EDAhybrid for SRFLP

This section provides the performance comparison between
EDAhybrid and several algorithms in solving SRFLP. We also com-
pare the EDAhybrid’s minimum achieved value with Objective
Function Value (OFV) of recent researches. The performance of
EDAhybrid is tested by using 15 SRFLP benchmark problems given
in the literatures. The inputs given in benchmark dataset are a ma-
trix containing flow between facilities, length of each facilities, and
clearance space between facilities. Problems coded P4, LW5, S8,
S8H, S9, S9H, S10, S11, LW11, and P15 are from Amaral (2006),
P6 and P12 are found in Neghabat (1974), P20 and P30 are
provided in Heragu and Kusiak (1991) and P25 is listed in Anjos
and Vannelli (2008).

The experiments for testing the effectiveness of EDAhybrid are
held by comparing EDAhybrid’s performance to EDA, GA, PSO,
and eACGA algorithms. Each algorithm is run for 20 times, and
the minimum value, standard deviation, error rate (mean value
compared to minimum value) and running time are recorded from
the results. We use Matlab function std(X) to compute standard
deviation. The formula used is presented in Eq. (8), s = std(X) re-
turns the standard deviation using Eq. (8). The result s is the square
root of an unbiased estimator of the variance of the population
from which X is drawn.

s ¼ 1
n� 1

Xn

i¼1

ðxi � �xÞ2
 !1

2

ð8Þ

Table 2 shows the computational experiment results of all algo-
rithms. The records with bold numbers in Table 2 imply the mini-
mum values found among all algorithms. The optimum solutions
found so far based on recent researches are listed in the 3rd and
4th columns. In terms of best solution, EDA and PSO can achieve
optimum solution from P4 until S11, while GA gets optimum solu-
tion until S10. On the other hand, eACGA can get the optimum
solution from P4 until LW11. Our proposed algorithm EDAhybrid
always achieves optimum solution in all benchmark problems. This
achievement results in a 0% gap if compared to OFV of previous
papers.

Table 2 also provides the error rates examination of all algo-
rithms. The error rates percentages, as shown in Eq. (9), are ob-
tained by comparing the mean value in 20 runs and the lowest
minimum value found in all algorithms. EDAhybrid gains mini-
mum error rates of all problems and reaches the lowest mean error
rate, which is 0.732%, compared to other algorithms.

errorð%Þ ¼ mean�minall

minall
� 100% ð9Þ

Standard deviation comparison among all algorithms is de-
scribed in Table 3. Among all algorithms, the results show that
EDAhybrid has the lowest standard deviation from P4 up to P25.
EDA gets lowest standard deviation in P30, but EDA cannot achieve
optimum solution in this problem as shown in Table 2.



Table 5
The minimum value and error rates of all algorithms when solving enhanced SRFLP.

n EDA GA PSO eACGA EDAhybrid

Min Error (%) Min Error (%) Min Error (%) Min Error (%) Min Error (%)

5 410.39 1.82 410.39 0.73 410.39 1.70 410.39 0.55 410.39 0.37
11 9404.10 1.27 9718.20 6.14 9480.50 4.21 9404.10 1.57 9398.10 0.61
20 62368.00 4.56 61773.00 5.56 60882.00 7.47 61694.00 2.33 60335.00 0.62
Mean error 1.54 3.43 2.95 1.06 0.53

The bold values indicate the minimum values found among all algorithms.

Table 6
The standard deviation and running time (seconds) of all algorithms when solving enhanced SRFLP.

n EDA GA PSO eACGA EDAhybrid

Stdev Runtime Stdev Runtime Stdev Runtime Stdev Runtime Stdev Runtime

5 9.01 0.12 6.32 0.12 15.37 0.02 5.50 0.12 4.62 0.11
11 120.49 1.64 154.79 1.25 233.84 0.15 131.17 1.44 98.04 1.66
20 625.10 29.79 1379.40 17.38 1522.20 2.76 898.23 24.06 157.45 37.86

The bold values indicate the minimum values found among all algorithms.
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The program code was run with Matlab, in Intel Core 2 Duo CPU
and 2 GB of RAM. Table 4 provides the running time comparison of
all algorithms. In terms of running time, PSO gets the fastest run-
ning time among all algorithms. EDAhybrid running time is slower
than others because of the complexity of this algorithm.

5.3. EDAhybrid for enhanced SRFLP

After applying EDAhybrid to benchmark problems, the effec-
tiveness of EDAhybrid in enhanced SRFLP is tested. Three new
datasets with different number of facilities that are 5, 11 and 20
are generated. There are five kind of inputs, three of them are sim-
ilar to basic SRFLP, the rest are a matrix containing installation cost
and two facilities that cannot be adjacent to each other for safety
reason. The first input is length derived from benchmark problem.
Clearance space is assigned randomly and becomes the second in-
put. Flow between facilities are generated randomly with Uniform
distribution U(0,20). Similarly, installation cost are generated ran-
domly with Uniform distribution U(0,10). The last input is safety
reason which is assigned randomly.

All algorithms from the previous section are tested in solving
enhanced SRFLP. We also use similar parameters setting, describe
in Section 5.1. Each algorithm is run for 20 times, and the mini-
mum, error rate (mean compared to minimum), standard devia-
tion, and running time (in seconds) are extracted from the result.

Tables 5 and 6 show the results of all algorithms when solving
enhanced SRFLP with 5, 11 and 20 facilities. The minimum OFV for
those problems are attained by EDAhybrid. Compared to other
algorithms in Table 5, EDAhybrid still acquires the lowest mean.
EDAhybrid also always gets the lowest standard deviation com-
pared to others in Table 6. Table 5 also provides the mean error
rate for every algorithm in the bottom part. EDAhybrid gets the
minimum percentage error in every case, so that it also achieves
the lowest mean error rate compared to other algorithms. Hence,
we can conclude that EDAhybrid can also perform very well in en-
hanced SRFLP.
6. Discussion and conclusion

This paper has proposed a new metaheuristic algorithm named
Hybrid Estimation of Distribution Algorithm (EDAhybrid), which
consists of hybridization of EDA, PSO and Tabu Search. To maintain
the diversity of EDA, hybridization with meta-heuristic algorithm
is needed, and this research chooses PSO as the meta-heuristic
algorithm. EDAhybrid runs EDA and PSO alternately every two
generations, and then TS as a local search is added at the end of
every iteration.

Based on computational results of 15 benchmark problems, the
performance of EDAhybrid always achieves optimum solution in
basic SRFLP. Compared to eACGA, EDA, PSO, and GA, the error rates
of EDAhybrid always get the lowest value. EDAhybrid also mostly
provides the lowest standard deviation than others. Compared
with the OFV of recent researches in SRFLP, EDAhybrid always gets
equal performance in achieving minimum objective function.

Instead of using one probabilistic model like in EDA, EDAhybrid
uses two. EDA uses a univariate probabilistic model, while EDAhy-
brid applies univariate and bivariate probabilistic models. The use
of variable interactions in bivariate probabilistic models could
represent better individual information for the EDA part in EDAhy-
brid (Chen et al., 2012). It allows EDAhybrid to perform better than
EDA. Artificial particles generated from global statistical informa-
tion characterize the distribution of promising solutions in the
search space. Therefore, the combination of artificial particles with
PSO operators could improve the solution quality. This also makes
EDAhybrid performs better than standard PSO and GA. EDAhybrid
is able to perform better than eACGA because it adds Tabu Search
as local search.

In conclusion, EDAhybrid is superior to other algorithms
because it has EDA which runs alternately with PSO to maintain
the diversity of EDA. Moreover, EDAhybrid adds Tabu Search as
local search, so that it might improve the global best solution in
every iteration.

Enhanced SRFLP problem is designed to make basic SRFLP closer
to real case by adding more constraints. Compared to other
algorithms, EDAhybrid can get the lowest minimum and error rates
in enhanced SRFLP. We can conclude from this research that
EDAhybrid can be used as a method to deal with basic and en-
hanced SRFLP and get high quality solution.
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